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SEPARATION SCIENCE AND TECHNOLOGY, 31 (5), pp. 665-678, 1996 

Jump Discontinuity Equations in Cake Filtration 

G. G .  CHASE 
DEPARTMENT OF CHEMICAL ENGINEERING 
THE UNIVERSITY OF AKRON 
AKRON, OHIO 44325-3906 

J .  KANEL 
EASTMAN CHEMICAL COMPANY 
KINGSPORT, TENNESSEE 

ABSTRACT 

Jump discontinuity balances in continuum theory are well known and are fre- 
quently applied in the literature for single-phase systems. Jump discontinuity bal- 
ances between dispersed multiphase regions have been derived for multiphase 
volume averaging continuum theory. However, multiphase region jump balances 
have not received comparable attention in the literature in multiphase applications. 
In this work the continuum equations and jump balances are summarized and 
compared for the cake filtration and cake drainage processes under air pressure. 
The comparison shows the jump conditions for the fluid and solid phases are easily 
decoupled in cake filtration. On the other hand, during the drainage process the 
mass discontinuity balances for the gas and liquid phases are coupled if there is 
significant mass transfer between the phases at the drainage boundary. Further- 
more, the momentum discontinuity balances are also coupled when the capillary 
forces are significant. 

INTRODUCTION 

The derivation and interpretation of the volume-averaged continuum 
equations are well established (1-4). Continuum models for cake filtration 
are frequently reported in literature [e.g., Tiller (3, Wakeman (6) ,  and 
Chase and Willis (7)]. The equations for cake filtration are evaluated using 
local experimental data (pressure and porosity) which make it possible to 
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666 CHASEANDKANEL 

apply the continuum equations with only concern for the jump conditions 
between the cake and the slurry approaching the cake (7, 8). 

Continuum models for evaluating the pressure loss across the whole 
filter assembly must include the resistance to flow through the filter me- 
dium and any support structures such as the wire mesh that may be used 
to provide structural support to paper and cloth media. The two-resistance 
model traditionally applied in the literature (9), in which the cake and the 
medium resistances are summed to give the overall resistance, accounts 
for the medium resistance provided that the effect of the cake on the 
medium is included in the evaluation (10). 

The addition of the two resistances in the traditional model has inherent 
assumptions about the jump discontinuity conditions between the multi- 
phase regions. While some of the conditions may appear trivial for cake 
filtration when only one fluid phase is present, the purpose of this paper 
from an academic perspective is to bring attention to these jump conditions 
and how they can differ when air displaces the liquid phase during 
drainage. 

The cake filtration process considered here is the simple rectilinear one- 
dimensional pressure filter shown in Fig. 1. In this process there are five 
distinct regions which have significantly different material properties 

FIG. 1 One-dimensional rectilinear flow filter cake assembly. Five distinct regions are the 
slurry above the cake, the cake, the filter medium, the support plate, and the filtrate. The 
boundaries between the regions are identified by their position in the z-direction as indicated 

on the left side of the figure. 
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JUMP DISCONTINUITY EQUATIONS IN CAKE FILTRATION 667 

(such as differences in materials, porosity, and pore size). The different 
regions are the slurry above the cake, the cake, the filter medium, the 
support plate under the medium, and the filtrate. The discontinuities or 
boundaries between the regions are identified at the marked positions in 
the z direction in Fig. 1: as the boundary between the slurry and cake at 
z = L,, as the boundary between the cake and medium at z = L,, as 
the boundary between the medium and the support plate at z = L,, and 
as the boundary between the support plate and the filtrate at z = 0. 

During the drainage process a gas such as air displaces the liquid phase 
in the cake, as shown in Fig. 2. Shown in Fig. 2 within the cake is the 
drainage boundary between the portion of the cake filled with the gas 
(with residual liquid trapped in pores or adsorbed onto the solid surface) 
and the portion of the cake saturated with the liquid phase. This drainage 
boundary moves downward with velocity w,. This boundary identifies 
one more discontinuity that must be included in the drainage model. This 
drainage boundary is modeled here as being within the cake only, This 
boundary condition can easily be extended to the filter medium and sup- 
port plate if necessary. 

These jump balances will be combined in future papers with the contin- 
uum balances for cake filtration and other similar multiregioned-dispersed- 
multiphase processes. These balances will help us to account for the inter- 
actions between the regions, such as when clogging occurs on a filter 
media, and give us more tools for predicting and interpreting experimental 
data. 

FIG. 2 Jump discontinuity within the filter cake due to the displacement of the liquid phase 
by a gas. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
5
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



668 CHASE AND KANEL 

PHASE AND REGION CONTINUUM EQUATIONS 

The a-phase mass (Eq. 1) and momentum (Eq. 2) balances from contin- 
uum theory are 

for a two-phase system with no mass transfer and no chemical reactions 
(3). The mass balance in Eq. (1) has terms accounting for the accumulation 
and convection of mass. The momentum balance in Eq. (2) has terms, 
from left to right, accounting for the accumulation of inertia, inertial con- 
vection, pressure force, drag force between the phases, the deviatoric 
stress term, and the force of gravity. 

Equations (1) and (2) are the basis for the equations derived here. The 
process is assumed to be a one-dimensional flow system with variations 
in the z-direction and uniformity in all other directions. Also, the intrinsic 
phase densities, p", are assumed to be constant. The mass balance of Eq. 
1 reduces to 

The momentum balance in Eq. (2) also simplifies. Willis et al. (1  1) de- 
duced through dimensional analysis that the inertial terms and the fluid 
stress term are insignificant compared to the pressure and drag force 
terms. Neglecting the insignificant terms, then for the one-dimensional 
flow problem considered here, the momentum balance in Eq. (2), reduces 
to 

for the fluid-phase momentum, and to 

for the solid-phase momentum, where the piezometric pressure, P ,  is the 
combined fluid phase pore pressure and the gravity force on the fluid 
phase 

P = Pf - pfgzz (6) 
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JUMP DISCONTINUITY EQUATIONS IN CAKE FILTRATION 669 

The phase mass balances in Eq. (3) and the phase momentum balances 
in Eqs. (4) and (5) apply to each of the regions (cake, filter medium, and 
porous plate). Though the equations are the same, the regions may behave 
differently due to their material makeup. The material properties which 
make the different regions distinguishable are introduced through constitu- 
tive relations for the interphase drag force, F:,  and the solid phase stress, 

The phase balances are summed to obtain the region balances. The 
7:z * 

region mass balance is 

a 
az - (EfVf, + ESVS) = 0 (7) 

where the sum of the volume fractions is unity, ef + E' = 1. This region 
mass balance indicates that the quantity ( E ~ I J ;  + E'IJ;) is independent of 
the z position though it may still be a function of time. 

The region momentum balance is 

aP a& 
dz a2 
- + - - ES(PS - pf)g, = 0 

which balances the pressure force, the solid stress, and the gravitational 
(buoyant) forces. 

The above phase and region continuum balances account for the kine- 
matics and dynamics of the materials within a given region. They are 
applicable to the cake filtration process shown in Fig. 1. For the drainage 
process, Eqs. (1) and (3) must be modified to include a term for the mass 
transfer of residual liquid from the solid matrix to the gas phase if the 
mass transfer is significant. Also, the residual liquid effects on the drag 
force between the phases must be accounted for such as through the rela- 
tive permeability (12). 

The transfer of mass and momentum across a boundary between two 
regions is accounted for in the region jump discontinuity balances which 
are now considered. 

DISCONTINUITY BALANCES BETWEEN REGIONS 

The continuum scale equation for an arbitrary property 4 is given as 

where i is the flux of property 4, and the quantities f and g represent the 
body and external sources of property 4,. The jump balance is obtained 
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670 CHASE AND KANEL 

FIG. 3 Material volume containing two regions separated by surface AAB. 

by integrating Eq. (9) three times, once over each of the region volumes 
VA and VB, and once over the combined material volume, V,, shown in 
Fig. 3.  When the two integral equations obtained from the region volumes 
are subtracted from the integral equation for the combined material vol- 
ume, the general jump balance is obtained (4): 

[PA@A(w - VA) - i ~ 1 . n ~ ~  - [PB@B(W - VB) - i B l * n A ~  = 0 (10) 

where subscripts A and B refer to the two regions, w is the velocity of 
the moving boundary (surface AAB), and nAB is the unit area normal vector 
for the boundary between the two regions. 

For most processes there is not a generation of property C$ at the bound- 
ary, and the right-hand side of Eq. (10) is zero. However, for processes 
in which a generation may occur, such as a chemical reaction at the bound- 
ary, then the zero on the right-hand side of the equation would be replaced 
with a generation term. 

MASS DISCONTINUITY BALANCES FOR CAKE 
FILTRATION 

The region mass discontinuity balance is 

[PA(VA - w) - p S ( v B  - w)l.nAB = 0 (11) 

When only two phases (fluid and solid) are present, the region densities 
and velocities are related to the phase intrinsic densities and volume mass 
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JUMP DISCONTINUITY EQUATIONS IN CAKE FILTRATION 671 

averaged velocities by 

p = Efpf + E S P S  

pv = EfpfVf + ESpSVS 

When there is no mass transfer between the phases, the convections 
of each phase across the boundary are linearly independent of each other. 
Equations (12) and (13) can be substituted into Eq. (10) and the linear 
independence applied to separate the terms for each of the phases to obtain 

(14) [EL(& - w Z )  - €B(uBz - w,)] = O 

[EX(VXz - wz) - €B(VBz - Wz)l = 0 (15) 

Between the slurry and the filter cake in the cake filtration process the 

(e f (d  - wZ))SLURRY Z=L, = (ef(d - wZ))cAKE Z = L ,  (16) 

where the subscripts SLURRY and CAKE indicate which region side of 
the boundary that the term represents. The subscript z = L, indicates 
the z-position of the boundary. 

As the slurry encounters the boundary between the cake and the slurry, 
solid particles are added to the cake surface, which causes the surface to 
move with time. This movement is represented by ( w ~ ) ~ = ~ , .  

At the cake-medium, medium-plate, and plate-filtrate region bounda- 
ries the boundary is normally stationary and (w,) is zero. This also implies 
that the solid phase velocity is zero. For these boundaries the fluid phase 
mass discontinuity balance has the form 

(17) 
If the filter medium is very thick and compressive, then it may be possi- 

ble to measure the movement of this boundary. In this case the boundary 
velocity, ( w ~ ) ,  would be nonzero. Also, if the solid particles can penetrate 
into the medium or plate or bleed through into the filtrate for these latter 
three boundaries, then the solid phase velocities also would be nonzero. 

At the plate-filtrate boundary, Eq. (17) translates into a relation be- 
tween the fluid phase velocity, ($), and the volumetric flow rate, Q: 

f f  

for a one-dimensional system. 

fluid-phase mass discontinuity can be written as 

f f  
[&&z - EBu&] = 0 

A ( E ~ ~ ~ ) P ~ A ~ E  = - Q (18) 

where the minus signs account for the fluid velocity in the minus z-direc- 
tion. Furthermore, through Eqs. (7) and (17) for zero solids velocity in 
the plate and medium, Eq. (18) extends to the medium-plate and the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
5
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



672 CHASE AND KANEL 

cake-medium boundaries to obtain 

Before leaving the mas? discontinuity balances for cake filtration, there 
is a useful relationship for the rate of cake growth that makes use of the 
mass discontinuity conditions listed above. Starting with the filter cake 
region, the fluid phase mass balance in integral form is 

which can be integrated by applying the fundamental theorems of calculus 
and the Leibnitz formula (13) to obtain 

(21) 
The integral in the first term of Eq. (21) is equal to the cake height, (L ,  

- Lm), times the cake average porosity, ef. The product rule of calculus 
can then be applied to separate the time derivative of the product (L,  - 

Also, the fluid phase discontinuity conditions in Eq. (16) at z = L, and 
Eq. (19) at z = L, are applied to Eq. (21) to relate the boundary terms 
to measurable quantities at the boundaries. Now Eq. (21) becomes 

L,)EP. 

(22) 

where the time derivative of L, is equal to the boundary velocity, 

As an approximation, the fluid and solid phase velocities are assumed 
to be the same in the slurry above the cake. Hence these two velocities 
must be equal to the superficial velocity or the flow rate divided by the 
cross-sectional area: 

(23) 
Furthermore, Willis et al. (14) and Willis and Tosun (15) report the time 
rate of change of the cake average porosity to be negligible for most cakes. 

Applying the above simplifications to Eq. (22), the macroscopic fluid 
phase mass balance takes the form 

( W z ) z = L , .  

u', SLURRY = a: SLURRY = - QlA 
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JUMP DISCONTINUITY EQUATIONS IN CAKE FILTRATION 673 

(24) f 
( W ~ ) ~ = L , ( E '  - E ~ S L U R R ~ )  + ( 1  - ESLURRY)Q/A = 0 

Defining the function G as the instantaneous rate of cake growth to the 
filtrate volumetric flow rate as 

then Eq. (24) becomes 
f 

(26) 

Hence, Eqs. (25) and (26) provide a way of estimating the rate of cake 
growth, ( w ~ ) ~ = ~ , ,  as a function of the slurry and cake average porosity. 

(1 - €SLURRY) 
a t )  = f p: 

(€SLURRY - €CAKE) 

MOMENTUM DISCONTINUITY BALANCES FOR CAKE 
FILTRATION 

The region momentum discontinuity balance is given by 

[PAVA(VA - w) + P A 6  + 7% - ~ B V B ( V B  - w) - PB6 - T&]'nAB = 0 

(27) 

For the one-dimensional process that is being considered here, and where 
the inertial terms are insignificant, Eq. (27) reduces to 

(28) 

In the filtration process considered here, the same fluid is in the regions 
on each side of the boundaries. This results in the pressures and stresses 
on each side of the boundaries being the same, and the pressure and 
stresses can be decoupled in Eq. (28) to obtain 

PA = P B  (29) 

[PA + 7LZz - PB - 7 s z z ]  = 0 

and 

'&zz = '&zz (30) 
At the slurry-cake boundary the solid phase structure in the slurry is 

fluidlike and cannot support any compressive stress. The stress on the 
solid phase at this boundary is therefore zero: 

'&SL,LJF;Y = 0 (31) 

Also, at the plate-filtrate boundary the stress on the solid phase in the 
z-direction is similarly zero. Some stresses must occur within the plate 
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674 CHASE AND KANEL 

to transmit the load of the stress at the medium-plate boundary to the 
walls of the filter assembly. The total force by the walls to hold the plate 
stationary, FpLATE, is related to the solid stress at the medium-plate 
boundary by 

where A is the cross-sectional area to flow for the filter assembly. 
When the fluids on either side of the boundary are immiscible, as in 

the drainage process shown in Fig. 2, then the discontinuity balances are 
different than those described above. The drainage boundary condition is 
now considered. 

DISCONTINUITY BALANCES FOR CAKE DRAINAGE 

Many of the discontinuity balances derived above also apply to the 
drainage process. At the gas-cake boundary at z = L,, the cake no longer 
grows due to particles from the slurry adding to the cake. Hence, this 
boundary may be stationary. However, this boundary may move with 
velocity ( w ~ ) ~ = ~ , ,  as indicated in Eq. (16) where the gas phase replaces 
the slurry if there is significant swelling or shrinkage as the cake is drained. 

The other difference is the additional discontinuity balance required for 
the drainage boundary shown in Fig. 2. Let the subscript GAS indicate 
the portion of the cake filled with the gas phase and let the subscript 
LIQUID indicate the liquid-saturated part of the cake. At this boundary, 
capillary forces cause the gas-phase pressure to differ from the liquid- 
phase pressure across this boundary. The pressure term, P, that appears 
in the continuum equations and the discontinuity equations refers to the 
measurable pressures of the continuous gas and liquid phases on each side 
of the boundary. It does not refer to the pressures within the discontinuous 
residual liquid droplets left behind in the cake because the free liquid is 
displaced by the gas phase. 

The capillary forces at the drainage boundary cause a pressure differ- 
ence between the gas and the liquid phases. This pressure difference is 
called the capillary pressure, PCAP, 

(33) 
From Eq. (28) the capillary pressure also relates the discontinuity in 

the stresses in the solid phase at the boundary. Combining Eqs. (28) and 
(33), the stresses are related by 

(34) 

PLIQUID - PGAS = PCAP 

[TbASzz - 6hQUIDzzl = PCAP 
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JUMP DISCONTINUITY EQUATIONS IN CAKE FILTRATION 675 

The mass balances given in Eqs. (14) and (15) do not apply in general 
to the drainage boundary because there are now three phases to be ac- 
counted for: the solid phase, the liquid phase, and the gas phase. Equa- 
tions (12) and (13) become 

(35) 

(36) 
When Eqs. (35) and (36) are combined with the region mass balance in 

p = dpl  + Egpg + ESP3 
pv = 8plvI + ,gpgvg + ESpSVS 

Eq. (11) for a one-dimensional process, we get 

] = 0  

] = o  

(P'E'v: + P ~ E P V ~  + P ~ E ~ V ~ ) G A S  - (pL1 + pgrg + P ~ E ~ ) G A S W Z  

- (P'E'v', + p g ~ g  + P ~ E ~ V ~ ) L I Q U I D  + (PIE' + pgrg + P ~ E ~ ) L I Q U I D W ~  

(37) 
To make this equation more manageable, we note that the liquid phase 

that remains in region A after the gas has pushed out the free liquid, 
denoted by ( p ' ~ l ) ~ A s ,  is the residual liquid that is trapped within the solid 
matrix and has the same velocity as the solid phase, Also, within the 
LIQUID region there is no gas phase present. Equation (37) simplifies to 

[ 

(PgEg@ + (pld f pSES)$)GAS - (pkl f pgeg + PSES)GASWz 

- (P'E'v: + P~E~V;)LIQUID + (p1$ + P ~ E ~ ) L I Q U I D W ~  

(38) 
Furthermore, in a drainage process the movement of the solid phase is 

usually insignificant compared to the movement of the fluid phases and 
the drainage boundary. Also, the volume fraction of the solid phase can 
be assumed to be the same on each side of the boundary. Hence, Eq, (38) 
simplifies to 

[ ( P ~ ~ ~ V E ) C ~ A S  - (PIE' + pgeg)GAs~z - (pl~'~Z)LIQUID + ( p l ~ l ) u Q u I D ~ z I  = o 

[ 

(39) 
Finally, if the rate of mass transfer per unit area between the liquid 

phase and the gas phase (by evaporation) is significant at this boundary, 
then we decouple the phases in Eq. (39) by introducing the mass transfer 
term, E. The equations decouple as 

(40) 

(41) 

&AS&AS(W~ - U ~ A S ~ )  = E 
I 1 1 

PLIQUIDELIQUID(W~ - VLIQUID~)  - P ~ A S E ~ A S W ~  = E 
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676 CHASEANDKANEL 

Equation (40) relates the gas velocity to the drainage boundary velocity 
and the rate of mass transfer between the gas and liquid phases at the 
boundary. If no mass transfer occurs, then the gas velocity and the drain- 
age boundary velocity are equal. Equation (41) relates the liquid velocity 
to the velocity of the drainage boundary velocity, the rate of mass transfer 
between the gas and liquid phases, and the amount of residual liquid left 
behind. 

A pressure difference between the cake and medium regions such as 
the capillary pressure given in Eq. (33) can also occur during surface 
clogging of the medium. This phenomena may be related to cake com- 
pressibility and depth clogging of the medium, but these latter effects are 
modeled by appropriate constitutive relations in Eqs. (4) and (5). Surface 
clogging is a boundary effect, such as straining at the surface in which 
cake particles plug pores of the medium just at the boundary, and results 
in a pressure difference that must be accounted for with a pressure drop 
function analogous to PcAp as applied in Eq. (33). 

CONCLUSIONS 

The work here shows how the general jump discontinuity balance is 
applied between multiphase regions to obtain discontinuity balances for 
the gas, liquid, and solid phases. Specific discontinuity balances are ob- 
tained for the processes of cake filtration and liquid drainage for a filter 
cake. The effects of mass transfer and capillary pressure are accounted 
for in the discontinuity balances for the drainage boundary which do not 
normally appear in the discontinuity balances for the multiphase regions 
in the filter cake. These discontinuity balances can now be applied to 
continuum models for solving the continuum equations for each separate 
multiphase region. 
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A 
AAB 
E 

F2 drag force between phases 

cross-sectional area of filter assembly 
area of boundary between multiphase regions A and B 
rate of mass transfer between the gas and liquid phases 
across the drainage boundary 
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JUMP DISCONTINUITY EQUATIONS IN CAKE FILTRATION 677 

force 
ratio of cake growth rate to filtrate rate 
flux of arbitrary property + 
z-position at slurry-cake boundary 
z-position at cake-medium boundary 
z-position at medium-plate boundary 
area normal vectors in Fig. 3 
piezometric pressure defined by Eq. (6) 
fluid phase pore pressure 
capillary pressure 
volumetric flow rate 
time 
A and B region volumes in Fig. 3 
a-phase average velocity 
velocity of boundary 
axial position as measured from the plate-filtrate 
boundary 
a-phase volume fraction 
region average a-phase volume fraction 
a-phase intrinsic density 
stress on solid phase matrix 
Kronecker delta 
arbitrary material property 

Superscrip ts/Subscripts 

a ,  f,  s 
g, 1 

CAKE 
MEDIUM 
PLATE 
SLURRY 
GAS 

Z 

LIQUID 

z = L  

a-phase, fluid phase, solid phase quantity 
gas and liquid phase quantities at the drainage boundary 
z-component of a vector or tensor 
quantity evaluated in the cake region 
quantity evaluated in the medium region 
quantity evaluated in the plate region 
quantity evaluated in the slurry region 
quantity evaluated in the gas-occupied portion of the 
draining cake 
quantity evaluated in the liquid-saturated portion of the 
draining cake 
quantity evaluated at boundary at z = L 
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